Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of Soil Microbes on Functional Traits of Loblolly Pine (Pinus taeda) Seedling Families From Contrasting Climates.

Identifieur interne : 000078 ( Main/Exploration ); précédent : 000077; suivant : 000079

Effects of Soil Microbes on Functional Traits of Loblolly Pine (Pinus taeda) Seedling Families From Contrasting Climates.

Auteurs : Danielle E M. Ulrich [États-Unis] ; Sanna Sevanto [États-Unis] ; Samantha Peterson [États-Unis] ; Max Ryan [États-Unis] ; John Dunbar [États-Unis]

Source :

RBID : pubmed:31998333

Abstract

Examining factors that influence seedling establishment is essential for predicting the impacts of climate change on tree species' distributions. Seedlings originating from contrasting climates differentially express functional traits related to water and nutrient uptake and drought resistance that reflect their climate of origin and influence their responses to drought. Soil microbes may improve seedling establishment because they can enhance water and nutrient uptake and drought resistance. However, the relative influence of soil microbes on the expression of these functional traits between seedling families or populations from contrasting climates is unknown. To determine if soil microbes may differentially alter functional traits to enhance water and nutrient uptake and drought resistance between dry and wet families, seeds of loblolly pine families from the driest and wettest ends of its geographic range (dry, wet) were planted in sterilized sand (controls) or in sterilized sand inoculated with a soil microbial community (inoculated). Functional traits related to seedling establishment (germination), water and nutrient uptake and C allocation (root:shoot biomass ratio, root exudate concentration, leaf C:N, leaf N isotope composition (δ15N)), and drought resistance (turgor loss point, leaf carbon isotope composition (δ13C)) were measured. Then, plants were exposed to a drought treatment and possible shifts in photosynthetic performance were monitored using chlorophyll fluorescence. Inoculated plants exhibited significantly greater germination than controls regardless of family. The inoculation treatment significantly increased root:shoot biomass ratio in the wet family but not in the dry family, suggesting soil microbes alter functional traits that improve water and nutrient uptake more so in a family originating from a wetter climate than in a family originating from a drier climate. Microbial effects on photosynthetic performance during drought also differed between families, as photosynthetic performance of the dry inoculated group declined fastest. Regardless of treatment, the dry family exhibited a greater root:shoot biomass ratio, root exudate concentration, and leaf δ15N than the wet family. This indicates that the dry family allocated more resources belowground than the wet and the two family may have used different sources of plant available N, which may be related to their contrasting climates of origin and influence their drought resistance. Examination of variation in impacts of soil microbes on seedling physiology improves efforts to enhance seedling establishment and beneficial plant-microbe interactions under climate change.

DOI: 10.3389/fpls.2019.01643
PubMed: 31998333
PubMed Central: PMC6962191


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of Soil Microbes on Functional Traits of Loblolly Pine (
<i>Pinus taeda</i>
) Seedling Families From Contrasting Climates.</title>
<author>
<name sortKey="Ulrich, Danielle E M" sort="Ulrich, Danielle E M" uniqKey="Ulrich D" first="Danielle E M" last="Ulrich">Danielle E M. Ulrich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Montana State University, Bozeman, MT, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Montana State University, Bozeman, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sevanto, Sanna" sort="Sevanto, Sanna" uniqKey="Sevanto S" first="Sanna" last="Sevanto">Sanna Sevanto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peterson, Samantha" sort="Peterson, Samantha" uniqKey="Peterson S" first="Samantha" last="Peterson">Samantha Peterson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences Department, New Mexico Institute of Mining and Technology, Socorro, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Max" sort="Ryan, Max" uniqKey="Ryan M" first="Max" last="Ryan">Max Ryan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dunbar, John" sort="Dunbar, John" uniqKey="Dunbar J" first="John" last="Dunbar">John Dunbar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioscience (B-11), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioscience (B-11), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31998333</idno>
<idno type="pmid">31998333</idno>
<idno type="doi">10.3389/fpls.2019.01643</idno>
<idno type="pmc">PMC6962191</idno>
<idno type="wicri:Area/Main/Corpus">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000041</idno>
<idno type="wicri:Area/Main/Curation">000041</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000041</idno>
<idno type="wicri:Area/Main/Exploration">000041</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of Soil Microbes on Functional Traits of Loblolly Pine (
<i>Pinus taeda</i>
) Seedling Families From Contrasting Climates.</title>
<author>
<name sortKey="Ulrich, Danielle E M" sort="Ulrich, Danielle E M" uniqKey="Ulrich D" first="Danielle E M" last="Ulrich">Danielle E M. Ulrich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Ecology, Montana State University, Bozeman, MT, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Ecology, Montana State University, Bozeman, MT</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sevanto, Sanna" sort="Sevanto, Sanna" uniqKey="Sevanto S" first="Sanna" last="Sevanto">Sanna Sevanto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Peterson, Samantha" sort="Peterson, Samantha" uniqKey="Peterson S" first="Samantha" last="Peterson">Samantha Peterson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences Department, New Mexico Institute of Mining and Technology, Socorro, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ryan, Max" sort="Ryan, Max" uniqKey="Ryan M" first="Max" last="Ryan">Max Ryan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dunbar, John" sort="Dunbar, John" uniqKey="Dunbar J" first="John" last="Dunbar">John Dunbar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioscience (B-11), Los Alamos National Laboratory, Los Alamos, NM, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioscience (B-11), Los Alamos National Laboratory, Los Alamos, NM</wicri:regionArea>
<placeName>
<region type="state">Nouveau-Mexique</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Examining factors that influence seedling establishment is essential for predicting the impacts of climate change on tree species' distributions. Seedlings originating from contrasting climates differentially express functional traits related to water and nutrient uptake and drought resistance that reflect their climate of origin and influence their responses to drought. Soil microbes may improve seedling establishment because they can enhance water and nutrient uptake and drought resistance. However, the relative influence of soil microbes on the expression of these functional traits between seedling families or populations from contrasting climates is unknown. To determine if soil microbes may differentially alter functional traits to enhance water and nutrient uptake and drought resistance between dry and wet families, seeds of loblolly pine families from the driest and wettest ends of its geographic range (dry, wet) were planted in sterilized sand (controls) or in sterilized sand inoculated with a soil microbial community (inoculated). Functional traits related to seedling establishment (germination), water and nutrient uptake and C allocation (root:shoot biomass ratio, root exudate concentration, leaf C:N, leaf N isotope composition (δ
<sup>15</sup>
N)), and drought resistance (turgor loss point, leaf carbon isotope composition (δ
<sup>13</sup>
C)) were measured. Then, plants were exposed to a drought treatment and possible shifts in photosynthetic performance were monitored using chlorophyll fluorescence. Inoculated plants exhibited significantly greater germination than controls regardless of family. The inoculation treatment significantly increased root:shoot biomass ratio in the wet family but not in the dry family, suggesting soil microbes alter functional traits that improve water and nutrient uptake more so in a family originating from a wetter climate than in a family originating from a drier climate. Microbial effects on photosynthetic performance during drought also differed between families, as photosynthetic performance of the dry inoculated group declined fastest. Regardless of treatment, the dry family exhibited a greater root:shoot biomass ratio, root exudate concentration, and leaf δ
<sup>15</sup>
N than the wet family. This indicates that the dry family allocated more resources belowground than the wet and the two family may have used different sources of plant available N, which may be related to their contrasting climates of origin and influence their drought resistance. Examination of variation in impacts of soil microbes on seedling physiology improves efforts to enhance seedling establishment and beneficial plant-microbe interactions under climate change.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31998333</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of Soil Microbes on Functional Traits of Loblolly Pine (
<i>Pinus taeda</i>
) Seedling Families From Contrasting Climates.</ArticleTitle>
<Pagination>
<MedlinePgn>1643</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01643</ELocationID>
<Abstract>
<AbstractText>Examining factors that influence seedling establishment is essential for predicting the impacts of climate change on tree species' distributions. Seedlings originating from contrasting climates differentially express functional traits related to water and nutrient uptake and drought resistance that reflect their climate of origin and influence their responses to drought. Soil microbes may improve seedling establishment because they can enhance water and nutrient uptake and drought resistance. However, the relative influence of soil microbes on the expression of these functional traits between seedling families or populations from contrasting climates is unknown. To determine if soil microbes may differentially alter functional traits to enhance water and nutrient uptake and drought resistance between dry and wet families, seeds of loblolly pine families from the driest and wettest ends of its geographic range (dry, wet) were planted in sterilized sand (controls) or in sterilized sand inoculated with a soil microbial community (inoculated). Functional traits related to seedling establishment (germination), water and nutrient uptake and C allocation (root:shoot biomass ratio, root exudate concentration, leaf C:N, leaf N isotope composition (δ
<sup>15</sup>
N)), and drought resistance (turgor loss point, leaf carbon isotope composition (δ
<sup>13</sup>
C)) were measured. Then, plants were exposed to a drought treatment and possible shifts in photosynthetic performance were monitored using chlorophyll fluorescence. Inoculated plants exhibited significantly greater germination than controls regardless of family. The inoculation treatment significantly increased root:shoot biomass ratio in the wet family but not in the dry family, suggesting soil microbes alter functional traits that improve water and nutrient uptake more so in a family originating from a wetter climate than in a family originating from a drier climate. Microbial effects on photosynthetic performance during drought also differed between families, as photosynthetic performance of the dry inoculated group declined fastest. Regardless of treatment, the dry family exhibited a greater root:shoot biomass ratio, root exudate concentration, and leaf δ
<sup>15</sup>
N than the wet family. This indicates that the dry family allocated more resources belowground than the wet and the two family may have used different sources of plant available N, which may be related to their contrasting climates of origin and influence their drought resistance. Examination of variation in impacts of soil microbes on seedling physiology improves efforts to enhance seedling establishment and beneficial plant-microbe interactions under climate change.</AbstractText>
<CopyrightInformation>Copyright © 2020 Ulrich, Sevanto, Peterson, Ryan and Dunbar.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ulrich</LastName>
<ForeName>Danielle E M</ForeName>
<Initials>DEM</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology, Montana State University, Bozeman, MT, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sevanto</LastName>
<ForeName>Sanna</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peterson</LastName>
<ForeName>Samantha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Earth and Environmental Sciences Department, New Mexico Institute of Mining and Technology, Socorro, NM, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ryan</LastName>
<ForeName>Max</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Earth and Environmental Sciences (EES-14), Los Alamos National Laboratory, Los Alamos, NM, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dunbar</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Bioscience (B-11), Los Alamos National Laboratory, Los Alamos, NM, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">genetic variation</Keyword>
<Keyword MajorTopicYN="N">growth</Keyword>
<Keyword MajorTopicYN="N">loblolly pine</Keyword>
<Keyword MajorTopicYN="N">root exudates</Keyword>
<Keyword MajorTopicYN="N">seedling physiology</Keyword>
<Keyword MajorTopicYN="N">soil microbes</Keyword>
<Keyword MajorTopicYN="N">turgor loss point</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31998333</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01643</ArticleId>
<ArticleId IdType="pmc">PMC6962191</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):83-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Mar 1;37(3):301-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28008081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Ecol Evol. 2018 Jan;2(1):57-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29203921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Apr;23(6):397-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12642241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2019 Sep;100(9):e02729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30991447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Feb 1;37(2):154-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27744381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2019 Aug 1;39(8):1300-1312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31135927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Evol. 2016 Mar 18;6(9):2763-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27217939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Jan;78(1):9-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2017 Aug;38:188-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28732267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11512-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18695234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Jun;27(6):901-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17331908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jun;32(6):666-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Jun;16(6):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Jan 1;38(1):83-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29126247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ISME J. 2008 Apr;2(4):404-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Sep;37(5):634-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23790204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):936-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1986 Dec;1(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(6):1729-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2011 Jan-Feb;103(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2010 Aug;73(2):197-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 18;6:36672</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27857198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Dec;17(12):701-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22947614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 May 1;38(5):690-695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29304257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Microbiol. 2001 Sep;47(9):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11683460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2018 May;27(9):2176-2192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29577469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Jul;156(4):861-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18414899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2016 Feb;92(2):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26656064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 May;190(3):783-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21244432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 22;104(21):8902-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17502607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Jul;17(7):461-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 11;9:603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29868063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun 28;9(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Jan;23(1):25-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29050989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2017 Aug;215:100-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28618258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2012;66:265-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11169-11174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28973879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Mar 14;9(3):e90882</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24633085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Nov;28(11):1693-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2014 Dec;17(12):1580-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25327976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Sep 19;8:1617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28974956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Dec 10;9(1):5254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30531998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Dec;188(4):1113-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20738785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jan 12;6:1241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26793218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2008 Feb;18(2):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18157555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Microbiol. 2018 Apr;3(4):470-480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29556109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Nov;37(11):2577-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24661116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Jan;42(1):20-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29645277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2015;1(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27019743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2008 Mar;89(3):773-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18459340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Aug 28;10(8):e0137026</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26317421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Jun;6(3):280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12753979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 May;22(7):489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11986052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 29;6:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Jan;31(1):78-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21389004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1992 Apr;58(4):1284-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Aug;17(8):478-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22564542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15282-15287</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31209057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Jul 18;2:16111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27428669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Mar;221(4):1814-1830</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30259984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(1):15-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29488280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 May;17(5):271-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22322002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2005 May;156(4):522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Aug;24(8):891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15172839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Feb;98(2):516-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2013 Jul;19(7):2158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23504744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2018 Jan - Mar;49(1):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28888828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2016 Apr;90(6):575-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26729479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2000 Aug 1;33(2):111-120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10967210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Dec;216(4):1034-1048</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28895167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Apr 26;3:70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 May;74(9):2805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2018 May 05;19(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29734724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 Mar 8;172(6):1178-1180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29522740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Feb;93(1):80-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1667-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19726571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jan 08;9:1875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30671067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Dec;5(12):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11120476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:233-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Psychol. 2013 Nov 26;4:863</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2016 Mar;21(3):218-229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 Mar;6(2):242-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23475999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Feb;130(4):609-616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Aug 07;6:608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26300905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1987 Apr;170(4):489-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2017 Aug;38:155-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28622659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 May;35(5):535-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25934987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Aug 23;8(1):12696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30140025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19685-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2017 Mar 1;41(2):109-130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Jan 22;9(1):249</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30670745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Oct;13(5):239-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14593517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 25;4:468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Dec;214(2):220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11800386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Aug;22(8):661-673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28601419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2017 Mar;183(3):631-641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27896478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2007 Mar-Apr;99(2):175-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17682770</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Montana</li>
<li>Nouveau-Mexique</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Montana">
<name sortKey="Ulrich, Danielle E M" sort="Ulrich, Danielle E M" uniqKey="Ulrich D" first="Danielle E M" last="Ulrich">Danielle E M. Ulrich</name>
</region>
<name sortKey="Dunbar, John" sort="Dunbar, John" uniqKey="Dunbar J" first="John" last="Dunbar">John Dunbar</name>
<name sortKey="Peterson, Samantha" sort="Peterson, Samantha" uniqKey="Peterson S" first="Samantha" last="Peterson">Samantha Peterson</name>
<name sortKey="Ryan, Max" sort="Ryan, Max" uniqKey="Ryan M" first="Max" last="Ryan">Max Ryan</name>
<name sortKey="Sevanto, Sanna" sort="Sevanto, Sanna" uniqKey="Sevanto S" first="Sanna" last="Sevanto">Sanna Sevanto</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31998333
   |texte=   Effects of Soil Microbes on Functional Traits of Loblolly Pine (Pinus taeda) Seedling Families From Contrasting Climates.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31998333" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020